浙大校友重磅革新Transformer!多token注意力让LLM开挂,错误率归0
浙大校友重磅革新Transformer!多token注意力让LLM开挂,错误率归0简单的任务,传统的Transformer却错误率极高。Meta FAIR团队重磅推出多token注意力机制(MTA),精准捕捉复杂信息,带来模型性能飞升!
来自主题: AI技术研报
6586 点击 2025-04-04 14:14
简单的任务,传统的Transformer却错误率极高。Meta FAIR团队重磅推出多token注意力机制(MTA),精准捕捉复杂信息,带来模型性能飞升!
OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
随着LLM不断迭代,偏好和评估数据中大量的人工标注逐渐成为模型扩展的显著障碍之一。Meta FAIR的团队最近提出了一种使用迭代式方法「自学成才」的评估模型训练方法,让70B参数的Llama-3-Instruct模型分数超过了Llama 3.1-405B。
大语言模型的「逆转诅咒」,被解开了。近日,来自Meta FAIR的研究人员推出了反向训练大法,让模型从反方向上学到了事实之间的逻辑,终于改进了这个困扰人们已久的问题。
在文本生成音频(或音乐)这个 AIGC 赛道,Meta 最近又有了新研究成果,而且开源了。前几日,在论文《Masked Audio Generation using a Single Non-Autoregressive Transformer》中,Meta FAIR 团队、Kyutai 和希伯来大学推出了 MAGNeT,一种在掩码生成序列建模方法。